
Vendio Stores – Template Language Reference

Vendio Stores
RST

Template Language Reference

Version 2.1, 09/07/2009

© 2009 by Vendio Services, Inc. 1

Vendio Stores – Template Language Reference

Contents
Introduction:...4

The Vendio Stores..4
Assumptions and prerequisites...6

1. RST Basics...6
1.1 HTML just works!...6

Hello, World!..6
Adding template assets...6

1.2 Adding data to your store using XML feeds...7
The Vendio Stores API...7
Adding content from an XML feed...8
Loading data from a local XML file...11
Loading multiple XML data sources..12
Speed up data loading: caching XML data..12

1.3 Replacing HTML attributes with real data..12
1.4 The pseudo-tag: <NOTAG>..14
1.5 Using context data..14
1.6 Adding navigation to your site: linking pages....................................15
1.7 Display conditional content..16
1.8 Show repetitive content...17

Display all items in a list..18
Limit the number of displayed items in a list...20
Using different formatting for items in a list...21

1.9 Dynamically refresh content with AJAX..22
1.10 Split your template in smaller files: using includes...........................23

2. Advanced RST...25
2.1 Debugging your template...25
2.2 Design constraints in Beta phase...26

3. Language specification...28
3.1 The RST data sources..28

XML data sources..28
Context variables..28
Session variables..28
Data pointers...28

3.2 The RST features..28
Display dynamic data..28
Conditional display..29
Repetitive display..29
Navigation support..29
AJAX support..29

3.3 The RST syntax..29
RST paths..29
RST expressions...30
RST attributes..30

© 2009 by Vendio Services, Inc. 2

Vendio Stores – Template Language Reference

4. Full language reference...31
4.1 Define XML data sources..31
4.2 Display data...31
4.3 Access context information..31
4.4 Access session information...32
4.5 Display content conditionally..32
4.6 Define data pointers..32
4.7 Set HTTP headers...32
4.8 Define loop sections..32
4.9 Override HTML attributes...33
4.10 Navigation & SEO..33
4.11 AJAX support..33
4.12 Include sections..33
4.13 The special RST tag...33
4.14 Set up multiple RST attributes in one tag.......................................33
4.15 Javascript frameworks...34

© 2009 by Vendio Services, Inc. 3

Vendio Stores – Template Language Reference

Introduction

This document describes the language used to create online stores with the Vendio Stores
product, called Really Simple Templates (or RST on short). It covers a wide range of topics,
from basic HTML integration to advanced widget programming, that will allow each store
owner to get the exact look and feel that he or she needs for his online store.

The Vendio Stores

The Vendio Stores are Vendio's premium service that enables sellers to create and manage
an online store. Its goal is to provide the ultimate platform for sellers to use and enhance, and
therefore the foundation of the platform exposes full access to all of its three components:

● The Stores API is a standalone interface over the seller's store data, that can be used
with any store front end (such as an online store, a desktop widget or a mobile
application). The API uses industry standard XML and HTTP technologies to enable
any type of application to retrieve and display the store data.

● The Store Templates are an absolutely unique offer on the market: sellers can fully
customize the look and feel of their store: they can organize their store by creating any
number of pages, with the design and layout they like. There are no limitations
about what the stores can look and behave like. Vendio offers a selection of highly
customizable, in-house made templates to choose from, as well as the availability to
create and upload a 100% custom made template. Moreover, sellers can choose to
have their store reliably hosted by Vendio, or to install their store on any web
hosting sytem they prefer. Template designers can partner with Vendio to create and
publish their templates within the Vendio system. Their templates will be available to all
users, along with those created by the Vendio designers.

● The Really Simple Templates language (RST) is a powerful, yet extremely simple
markup language that enables sellers to instantly integrate their store data in their store
templates. The language was designed with simplicity in mind and it's light and
intuitive, so that any template designer can start writing a Vendio Stores template
without any prior knowledge or programming skills.

Assumptions and prerequisites

The topics in this document will focus on how to write a 100% custom made template for the
Vendio Stores. They assume you already have set up your Vendio Stores, if you haven't you
can go now through the following steps:

● Go to www.vendio.com and sign up for a free account with Vendio Stores
● Go to the Store Info page, choose a store name and choose to host your store at

Vendio
● Design a template using your favorite authoring tool (or text editor), pack the

template files in a zip archive and upload the archive in the Store Template page.
Preview your template to see the results. Repeat this until you are satisfied with your

© 2009 by Vendio Services, Inc. 4

http://www.vendio.com/
http://stores.beta.vendio.com/wizard/main/chooseTemplate
http://stores.beta.vendio.com/
http://www.vendio.com/

Vendio Stores – Template Language Reference

store.

Inline notes
Certain topics may require some previous knowledge on web technologies, such
as HTML, XML or Ajax. While it's beyond the scope of this document to cover in
detail every collateral technology employed or referred, brief inline notes will
describe the basics of such technologies whenever they're mentioned, and will
provide additional links to relevant documentation on the web.

There... are you ready to write your first Vendio Stores template?

© 2009 by Vendio Services, Inc. 5

Vendio Stores – Template Language Reference

1. RST Basics | Step by step template building
1.1 HTML just works!

A template is a collection of HTML files and other assets (images, CSS files, Flash movies
etc.). The only requirement that a Vendio Stores template has is to contain a file called
home.html. This is the beauty of the Vendio Stores templates: you can use any HTML code
to create a store page and it just works!

What is HTML?
From Wikipedia: HTML, an initialism of HyperText Markup Language, is the
predominant markup language for Web pages. Now really, you're writing web
templates, you knew what HTML was, didn't you?

Web authoring tools
Web authoring is just a fancy word for designing a web site. There are a lot of
software programs out there to help designers, programmers or even complete
non-technical people to build a collection of HTML pages, which compose a site.
These programs are called web authoring tools.

Hello, World!

Use your favorite text editor, or authoring tool, to create a simple (or complex!) file called
home.html. Here is an example of how your page might look like:

home.html
<html>
<body>
<h1>Hello, World!</h1>
Welcome to my store.
</body>
</html>

Now pack the file in a .zip file and upload it in the Store Template page. Use the store preview
feature to see how your page looks like.

Adding template assets

Your template can have any number of HTML files, as well as images, flash movies or CSS
files. Vendio Stores do offer this unique feature. You can organize the files using any directory
structure you like; your imagination is the only limit of what your template looks like and what
it does! If you're using a web authoring tool to build your template, that has a feature to save,
or export, or publish your composition as HTML, just pack the file structure that your tool
created in a .zip file (make sure your main page is called home.html), upload it and it will work
right out of the box!

© 2009 by Vendio Services, Inc. 6

http://stores.beta.vendio.com/wizard/main/chooseTemplate
http://scout.wisc.edu/Projects/PastProjects/toolkit/webtools/authoring.html
http://scout.wisc.edu/Projects/PastProjects/toolkit/webtools/authoring.html
http://en.wikipedia.org/wiki/HTML

Vendio Stores – Template Language Reference

1.2 Adding data to your store using XML feeds

Unless you're building a very simple web site, your site will need to display real data, and
that's when the RST language comes in. XML feeds are a popular way to exchange
information over the web, and that's why the Vendio Stores templates have been designed so
that information from an XML feed be extremely easy to integrate.

What is XML?
XML stands for Extensible Markup Language. XML's purpose is to aid information
systems in sharing structured data, especially via the Internet (Wikipedia).
Basically, XML is a language that allows information (such as the information
about your online store and items) to be packed and exchanged over the web,
between its storage location (such as your online inventory) and an application
displaying it (such as your online store being visited by a customer). The XML
quickly became a very popular format in conjunction with the practice of
syndicating content over the web, using web feeds.

Web feeds
A web feed represents an access channel to data that is updated frequently.
Originally a way to distribute news over the Internet, web feeds and web APIs are
now a common way to publish (or syndicate) content from a central source to a
wide range of subscribers. It its simplest and most commonly encountered form, a
web feed is an URL that, when accessed from a browser or from some other
application, returns an XML-formatted piece of information.
Example: Open the URL below in your browser to see the Yahoo News Top
Stories in XML format.
http://rss.news.yahoo.com/rss/topstories

The Vendio Stores templates can display any information available on the web in XML format.
With XML web feeds being so popular, this means your templates can display virtually
anything, as long as there's a web service that offers that information as a web feed. While
displaying Yahoo News on your website may not be very useful, showing your inventory items
is a critical feature for an online store, and that's where the Vendio Stores API comes into
play.

The Vendio Stores API

The Vendio Stores API is a collection of URLs (or HTTP calls) that return information about
your store and inventory items in XML format. Any application can retrieve (public) information
regarding your store settings, store categories, or items. The API can also be used to manage
your store's shopping carts and, in the future, the API will be extended to fully integrate the
checkout process. You can refer to the Stores API Reference to find more information about
the available calls.

The Vendio inventory
Vendio offers you an online inventory service, which is a database to store and
manage all your items for sale. To set up your inventory, go to the My Items page
on the Vendio site. The nice thing about the Vendio inventory is that all your

© 2009 by Vendio Services, Inc. 7

http://sell.vendio.com/items/my_items.jsp
http://stores.beta.vendio.com/documentation/HostedStoresAPIReference.pdf
http://rss.news.yahoo.com/rss/topstories
http://en.wikipedia.org/wiki/XML

Vendio Stores – Template Language Reference

inventory data can be retrieved as an XML feed via the Vendio Stores API.

Adding content from an XML feed

Let's suppose that you wrote a template page that looks like this:

home.html
<p>
<h1>Item Title 123</h1>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

Price: $18.49
</p>

This is a fragment that displays the title, the description and the price of a dummy (fake)
product. Although oversimplified for clarity reasons, the fragment above is actually quite
similar to what the output of a web authoring tool might look like. When you load the
home.html file in your browser, you browser will format the dummy data according to the
HTML markup, and will display it. What you need now is to replace the dummy data with real
data about an item.

First, you need an XML feed that returns the data about the item. The URL for such a feed
looks like:
http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.store=mystorename&GII.lid=123

The Stores API URLs
The URL above triggers a GetItemsInformation call (represented by the GII
verb). The URL contains the name of the web service that returns the data, the
call's name (or verb), the seller's store name and the item's listing ID. Every
Vendio Stores user has a unique store name, that identifies his store among other
stores. Each inventory item available in store has a unique listing id, that identifies
it among other inventory items in the seller's store.

The XML response of this call looks like the one below:
<Storefront>
 <ItemsInfo>
 <Status>Success</Status>
 <Items count="1" totalItems="1" totalPages="1">

© 2009 by Vendio Services, Inc. 8

Vendio Stores – Template Language Reference

 <Item featured="Y" id="123">
 <Title>Puppy Dog</Title>
 <ImageUrl caption="Cute Puppy" fullSizeImageUrl="http://someserver/someimage.jpg"/>
 <Price currency="$">29.99</Price>
 <Description>Hey, come and get this lovely puppy.</Description>
 </Item>
 </Items>
 </ItemsInfo>
</Storefront>

By looking at the above response, you can easily identify the data that we need to display: the
item's title is Puppy Dog, the item's description is Hey, come and get this lovely puppy. and
the item's price is $29.99. What we want is to include these values in our HTML mockup
code.

Remember, the code we used to display the dummy data was (copy & paste from above):
<p>
<h1>Item Title 123</h1>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

Price: $18.49
</p>

Now, let's replace it with:
<p rst:xml="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.store=mystorename&GII.l id=123">
<h1 rst:content="/Storefront/ItemsInfo/Items/Item/Title">Item Title 123</h1>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

Price: <b rst:content="${/Storefront/ItemsInfo/Items/Item/Price}">$18.49
</p>

That's it! As you can see, the added information does not affect the layout of your template

© 2009 by Vendio Services, Inc. 9

Vendio Stores – Template Language Reference

when you preview the page locally. All you did was to add some HTML tag attributes starting
with a rst: prefix, which are not visible in the template itself. However, if you upload your
template and use it for your store, you will see the actual store data replacing the dummy
values. I.e. the dummy title, description and price will be magically replaced with the real data
from the XML feed. RST is that simple: that what Really Simple Template stands for!

HTML tags and attributes
From a structural point of view, a HTML document consists of content and
markup. The content represents any meaningful information displayed in the
document, such as a text, an image or a movie. The markup is a special text, not
visible to the document's reader, but specifying and affecting the way the
information is formatted within the document. The markup specifies things like
font, size, color, alignment, transparency or layout. The markup usually consists of
words surrounded by < > signs, called tags, as in , or <input>,
optionally accompanied by additional key-value pairs within the same < > signs,
as in <form action="doAction.html" method="post">

What RST does is leverage this feature of the HTML markup and "inject" data-
related information (markup) as HTML attributes, so that the human-readable
representation of the template is not affected in any way by this modification. RST
was designed to be an intuitive, non-intrusive, HTML-friendly way to inject
data from XML feeds into a web page.

The RST rendering engine
So you might wonder: what exactly is behind the "magic" of turning RST tags into
actual data? The answer is simple: the rendering engine. Your template files are
stored for free on the Vendio servers, but this is not all -- they are parsed and
rendered by a special application called... the engine. So an RST-based web site
relies on the following components:

● one or more XML data sources accessible via HTTP ("the API")
● a collection of HTML pages enriched with RST attributes ("the template")
● the RST rendering engine

The RST attributes are special HTML attributes that are added to the HTML tags
in a template to bind data from the XML feeds to those tags. In the absence of the
RST rendering engine, the template will be a valid HTML mockup (with dummy
data). When the RST engine parses the template, it will generate actual dinamic
pages based on the XML data.

So let's recap one more time the changes needed to display XML data in the template:

1. Add a rst:xml attribute to any HTML tag in your template. Set the value of this attribute to
the URL of the XML feed:

<p rst:xml="http://sell.vendio.com/GetHostedStoresInfoServlet?verb=GII&GII.store=mystorename&GII.lid=123">

2. Add rst:content attributes to any HTML tag to replace the content of that tag with a value
from the XML feed. Set the value of this attribute to the XPath expression referring the

© 2009 by Vendio Services, Inc. 10

Vendio Stores – Template Language Reference

information within the XML feed:

<h1 rst:content="/Storefront/ItemsInfo/Items/Item/Title">Item Title 123</h1>

What is XPath?
You may have noticed the "path" notation used to refer a piece of information (or
node) within the XML document. This notation is called XPath, and it's another
widely used technology used in conjunction with XML to display data from a feed.
XPath enables us to "traverse" the nodes of an XML feed in order to "extract" the
data we're interested in, using a syntax very similar to common file system paths.
For instance, to extract the "title" from the XML example above, you can use the
following XPath expression: /Storefront/ItemsInfo/Items/Item/Title. If
you look at the XML feed as if it were a directory structure, then the XPath
expressions become pretty straightforward.
Explaining XPath in detail is beyond this topic's scope, but you can find many
references on the web and the official XPath page at W3C is a good start.

RST Path: an RST extension to XPath
There is one limitation of the XPath way to extract information from an XML feed:
using an XPath expression, you can select any node from the document, and
therefore you can refer its content, but you cannot access the value of an attribute
of that node. Therefore, the RST specification adds a simple extension to the
XPath syntax, in order to retrieve the value of a tag attribute, which is appending a
@ sign followed by the name of the attribute, after the node selector. For instance,
to refer the "currency" in the GII response, you would use the following RSTPath
expression: /Storefront/ItemsInfo/Items/Item/Title@currency.
See Chapter 3. Language specifications for the complete specification of the
RST Path expressions.

Loading data from a local XML file

In certain cases, you may want to store some template data (such as number of items per
page, promotional texts or store policies, font or color schemes) in a place where they can be
easily accessed and modified. One option would be to embed them in the template, and edit
the template files whenever you want to change them. A more convenient way would be to
store the data in an XML file, along with the template files, and access the data from the XML
file just as if it were a web feed. That's because it's virtually no difference between an XML file
that you store locally with your template and an XML file that you fetch via an URL, except for
needing to specify that the local XML file is... local. And you do that by adding an
rst:xmlsource="template" attribute next to the rst:xml attribute that loads the file, and set
the rst:xml value to the name of the local XML file:

<p rst:xml="settings.xml" rst:xmlsource="template">
...
</p>

In the example above, a file called settings.xml would be loaded as an XML source.

© 2009 by Vendio Services, Inc. 11

http://www.w3.org/TR/xpath

Vendio Stores – Template Language Reference

Loading multiple XML data sources

Complex pages need to display several types of data -- categories, items, cart contents -- and
to retrieve this information you need to access more than one URL. RST allows you to define
as many XML sources as you like, and in order to distinguish them you need to add
identifiers to each of them, as follows:

<p rst:xml:somename="http://path/to/some/xml"
 rst:xml:someothername="http://path/to/some/other/xml"
 ...>
<b rst:content="somename:/xpath/to/data/in/first/xml">Some name
<i rst:content="someothername:/xpath/to/data/in/the/second/xml">Some other name</i>
</p>

The names added after the rst:xml attribute (somename, someothername) are called
identifiers. They can be used later to refer the corresponding XML feed. There are a few
limitations on what characters may appear in an identifier, but using only characters should
be a simple rule to keep you out of trouble.

You can add any number of rst:xml attributes in any HTML tag. You can also place each
rst:xml attribute in its own tag:

...
<b rst:content="somename:/xpath/to/data/in/first/xml">Some name
<i rst:content="someothername:/xpath/to/data/in/the/second/xml">Some other name</i>
</p>

Speed up data loading: caching XML data

For each rst:xml attribute in your template that points to a distinct URL, a call will be made to
that URL in order to retrieve the data. This occurs on every page load, and if your store has
many visitors this may impact your site's performance. Some data, for instance the category
tree, change infrequently, and therefore reusing the fetched data between requests would
speed up page loading, without creating any problem. To enable data caching, use the rst:ttl
attribute and set it to a reasonable number of seconds to cache the data for. A low value will
ensure high responsiveness to data changes, a high value will ensure increased loading
speed. A value of 0 (zero) specifies that the data should never be cached -- this should be set
for accuracy-critical information, such as cart contents or available selling quantity.

1.3 Replacing HTML attributes with real data

We've seen how tag contents can be replaced with data from an XML feed using the

© 2009 by Vendio Services, Inc. 12

Vendio Stores – Template Language Reference

rst:content attribute. What if we need to replace a tag's attribute with data from an XML
feed? For instance, if we want to display an image for an item, we would need to set the src
attribute of the tag to the actual image URL.

Suppose our mockup contains the following HTML code to display the image of an item:

and we're using the GII call to retrieve the item's information (copy and paste from above):

http://sell.vendio.com/GetHostedStoresInfoServlet?verb=GII&GII.store=mystorename&GII.lid=123

<Storefront>
 <ItemsInfo>
 <Status>Success</Status>
 <Items count="1" totalItems="1" totalPages="1">
 <Item featured="Y" id="123">
 <Title>Puppy Dog</Title>
 <ImageUrl caption="Cute Puppy"
fullSizeImageUrl="http://someserver/someimage.jpg"/>
 <Price currency="$">29.99</Price>
 <Description>Hey, come and get this lovely puppy.</Description>
 </Item>
 </Items>
 </ItemsInfo>
</Storefront>

What we need to do is:

• load the XML data from http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.store=mystorename&GII.lid=123

• replace the src attribute with http://someserver/someimage.jpg (from the
"ImageUrl" value in the XML feed)

• replace the alt and title attributes with Cute Puppy (from the "caption" value in the
XML feed)

and here's how we do it:
<img rst:xml:iteminfo="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.store=mystorename&GII.lid=123"
src="thumb.jpg"
rst:attr:src="iteminfo:/Storefront/ItemsInfo/Items/Item/ImageUrl"
alt="Item 123"
rst:attr:alt="iteminfo:/Storefront/ItemsInfo/Items/Item/ImageUrl@currency"
title="Item 123"
rst:attr:title="iteminfo:/Storefront/ItemsInfo/Items/Item/ImageUrl@currency"/>

© 2009 by Vendio Services, Inc. 13

Vendio Stores – Template Language Reference

Again, what happens is that loading the HTML code above in a browser will not affect the
original layout, but when you upload it to the Vendio server and preview your template or visit
your store, the RST attributes will do their job and replace the dummy data. For each HTML
attribute that you want to replace (or set) to a value from an XML feed, you need to set an
rst:attr attribute with the tag's name, i.e. rst:attr:tagname="xpath value". If you
specify an rst:attr attribute, it's up to you whether you specify the original attributes (src, alt
and title in the example above) or not. The only difference is what you see when loading the
template directly in your browser, it doesn't have any effect when the template is rendered by
the RST engine.

1.4 The pseudo-tag: <NOTAG>

RST enables template designers to include data from XML feeds in their HTML mockups.
This is done by adding RST attributes (HTML attributes starting with the rst: prefix) to the
HTML tags. RST attributes are parsed and interpreted during the template rendering and
control the content of the HTML tags they are attached to. What if you don't want to output
any HTML tag whatsoever, but only data from the XML feed? In this case you'll use a special
tag called <NOTAG>. NOTAG will behave like any other HTML tag, i.e. any number of RST
attributes can be added to one NOTAG tag and any number of NOTAG tags can be added to
the template document -- however, the tag itself will not be rendered in the final output.

Example:

home.html
<h1>Item details</h1>
<notag rst:xml:iteminfo="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.store=mystorename&GII.lid=123"/>
Title: <notag rst:content="/Storefront/ItemsInfo/Items/Item/Title">Title 123</notag>

The generated output will look like:
<h1>Item details</h1>
Title: Puppy Dog

What happened is that an XML source was loaded and a value from the XML feed was
rendered, yet its containing tag NOTAG was not rendered.

1.5 Using context data

When browsing a site, the displayed content changes based on the context of your
navigation. The navigation context includes the page name (e.g. the home page, the item
details page, the about us page, or the checkout page), the page number (e.g. when
navigating through multiple pages of search results), search terms, a product ID or a category
name etc.

Some context data is explicitly set by clicking on a link, or specifying a value in the URL of the

© 2009 by Vendio Services, Inc. 14

Vendio Stores – Template Language Reference

page. For instance, an item detail page URL may look like:
http://www.vendio.com/stores/mystorename/item/item-with-a-funny-
title/lid=123. In this case, the lid=123 part of the URL defines an explicit context data,
the which is item's ID. The item ID uniquely identifies one item, which in turn generates a
page content specific to that item.

Other context data is implicit, calculated automatically, such as the store's URL, the prev /
next page URLs, the number of results per page or the transfer protocol (HTTP / HTTPS).
RST refers to the implicit context data as magical values.

Any context value can be used in RST attributes by referring it as context:variable_name.
For instance, let's suppose that searching for "Ipod Nano" triggers the following URL:
http://www.vendio.com/stores/mystorename/search/keywords=Ipod%20Nano/ and
you want to display a text in your page that looks like:

<div>Searching the store for Canon PowerShot ...</div>

where you want to replace the "Canon PowerShot" text with the actual search terms. Here's
how you do it:

<div>Searching the store for <b rst:content="context:keywords">Canon PowerShot ...</div>

For a complete list of "magical" context keys, refer to Chapter 4.3 Access context
information.

1.6 Adding navigation to your site: linking pages

Almost any page of a store contains links to other pages. These may be links to external
pages (such as PayPal), links to other store pages (such as About Us), links to parametrized
store pages (such as links to showing all products in a category, or showing the item details
for a product), or navigation links to a different page number in a list. RST offers a built in
mechanism for generating links, through the use of the rst:href attribute. A few examples:

Link to About Us:
<a rst:href:pagename="about">About Us

Link to the details page for the current item:
<a rst:href:pagename="details" rst:href:lid="context:lid">Details

Navigation links to the first/prev/next/last pages of results in a list:
<a rst:href:page="1">First
<a rst:href:page="context:__prevpage">Previous
<a rst:href:page="context:__nextpage">Next

© 2009 by Vendio Services, Inc. 15

Vendio Stores – Template Language Reference

<a rst:href:page="searchresultsxml://Results@pageCount">Last

Use the rst:href:pagename attribute to specify the page to link to. The name of the page is
the name of the .html file in your template directory, without the .html extension (so for
example rst:href:pagename="about" would link to about.html).

Use rst:href:param="value" to add any param=value context data to your link. For
instance, use "lid" to specify the ID of a product and set its value to a value taken from an
XML feed or from the context data.

1.7 Display conditional content

Sometimes you need to display some content only if certain condition is met (for instance
show a Google checkout button only if the Google checkout is enabled and available for an
item), or hide some content if a certain condition is met (for instance hide links to store
categories that don't have any items associated), or display alternate content based on a
certain condition (for instance, show a Buy Now button if there's enough quantity for an item,
or a Sold Out button if the quantity is zero). RST provides two conditional control attributes,
rst:if and rst:ifnot. The value of this attribute can be the value from an XML feed (in this
case, an empty value or a value of 0 evaluates to false, while any other value evaluates to
true) or a more complex comparison between two values (several operators are available:
equals to, does not equal to, is less than, is greater than or equal etc.). Refer to Chapter 3.3
The RST syntax for a complete list of comparison operators.

<a rst:if="{context:page} gt 1" rst:ifnot="{context:__prevpage} eq 1" rst:href:page="1">First</
a>
<a rst:if="{context:page} gt 1" rst:href:page="context:__prevpage">Previous
<a rst:if="{context:page} lt {{searchresultsxml://Results@pageCount} - 1}"
rst:href:page="context:__nextpage">Next
<a rst:if="{context:page} lt {{searchresultsxml://Results@pageCount} - 1}"
 rst:ifnot="{context:__nextpage} ne {searchresultsxml://Results@pageCount}"
 rst:href:page="searchresultsxml://Results@pageCount">Last

In the example above, the "First" link is displayed only if the current page is not the first one
and if the first page is different than the previous page; the "Previous" link is displayed only if
the current page is not the first one; the "Next" link is displayed only if the current page is not
the last one; and the "Last" link is displayed only if the current page is not the last one and the
last page is different than the next page.

Nested RST attribute values
In its simplest form, a RST attribute can take the value of an XPath (such as
/Storefront/ItemsInfo/Items/Item/Title), or a context variable (such
as context:keywords). When grouping more than one such values within the
same attribute, they are included in braces { }. Examples:

● To display concatenated values:
 <b rst:content="Page {context:page} of

© 2009 by Vendio Services, Inc. 16

Vendio Stores – Template Language Reference

{searchresultsxml://Results@pageCount}">Page 1 of 10
● To evaluate conditions:

<a rst:if="{context:page} ne
{searchresultsxml://Results@pageCount}">More...
● Deambiguation:

 <a rst:href:lid="{context:lid}">Permalink

rst:if will skip the containing tag completely if the condition is evaluated as false, while
rst:ifnot has the opposite effect: will display the tag's content if the condition is not met.

1.8 Show repetitive content

Store data (and its XML feed representation) often contains data belonging to a list of similar
entities. For instance, retrieving information on the store categories will return the same
information (e.g. name, id, item count) for every category in the store. Or, retrieving the
information on an item will return the URLs of all the images associated to that item. Or,
search results will include the same type of information for every item matching the search
criteria. The results are typically displayed on the page in a similar manner, as a list, either
one after another, or grouped as multiple items on a row, or grouped as multiple items on
rows with alternating background colors. In every case, the format is based on a repeating
pattern. The pattern may repeat after each item, or after a group of items, or after a fixed
number of groups of items. RST is again a great helper in providing a simple, yet powerful
way to manage repetitive data.

Node lists in XML
A list of items is typically represented in an XML document as a sequence of
nodes having the same name, grouped inside a container node:
<ContainerNode>
 <ItemNode>...</ItemNode>
 <ItemNode>...</ItemNode>
 ...
 <ItemNode>...</ItemNode>
</ContainerNode>

The <ItemNode> node may contain some data or some child nodes of its own.
Optionally, nodes in the list may contain a diferentiating attribute, such as the
node's index within the list, or a unique ID, but this is not mandatory:
<ContainerNode childCount="5">
 <ItemNode index="1" itemID="123">...</ItemNode>
 <ItemNode index="2" itemID="456">...</ItemNode>
 <ItemNode index="3" itemID="789">...</ItemNode>
 <ItemNode index="4" itemID="abc">...</ItemNode>
 <ItemNode index="5" itemID="xxx">...</ItemNode>
</ContainerNode>

© 2009 by Vendio Services, Inc. 17

Vendio Stores – Template Language Reference

Accessing lists using XPath
When nodes having the same name are grouped as a list in an XML document,
accessing them by name is no longer possible. Take for instance the following
XML feed:
<ContainerNode childCount="5">
 <ItemNode index="1" itemID="123">...</ItemNode>
 <ItemNode index="2" itemID="456">...</ItemNode>
 <ItemNode index="3" itemID="789">...</ItemNode>
 <ItemNode index="4" itemID="abc">...</ItemNode>
 <ItemNode index="5" itemID="xxx">...</ItemNode>
</ContainerNode>

How do you access the information belonging to the 3rd item in the list? Or the
one belonging to item having itemID="abc"? The answer is: using XPath.

● To retrieve the 3rd node in the list: /ContainerNode/ItemNode[3]
● To retrieve the node with itemID="abc":

/ContainerNode/ItemNode[@itemID='abc']
● To retrieve the item ID of the 3rd node:

/ContainerNode/ItemNode[3]@itemID

Display all items in a list

In its simplest form, displaying repetitive content means iterate through all the nodes in a list
and display the information belonging to those nodes. Let's say we have an XML feed
containing the following data:

http://sell.vendio.com/GetHostedStoresInfoServlet?verb=GII&GII.searchString=test&GII.store=mystorename

<Storefront>
 <ItemsInfo>
 <Items count="10" totalItems="10" totalPages="1">
 <Item featured="Y" id="644">
 <Title>Test </Title>
 <Subtitle/>
 <ImageUrl/>
 <Price currency="$">23.00</Price>
 </Item>
 <Item featured="Y" id="862">
 <Title>Test Inventory</Title>
 <Subtitle/>
 <ImageUrl/>
 <Price currency="$">10.00</Price>
 </Item>
 <Item featured="Y" id="611">
 <Title>This is test item for sku1</Title>
 <Subtitle/>

© 2009 by Vendio Services, Inc. 18

Vendio Stores – Template Language Reference

 <ImageUrl/>
 <Price currency="$">2.00</Price>
 </Item>
 <Item featured="Y" id="616">
 <Title>This is test item for sku2</Title>
 <Subtitle/>
 <ImageUrl/>
 <Price currency="$">2.00</Price>
 </Item>
 </Items>
 <Status>Success</Status>
 </ItemsInfo>
</Storefront>

and we want to display a simple list with the item titles, linking to the item details pages. The
HTML mockup for such a list may look like:

 Item 1
 Item 2
 Item 3

To replace the list above with the actual content of the XML feed, we write:

<ul rst:xml="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.searchString=test&GII.store=mystorename"
 rst:repeat:item="/Storefront/ItemsInfo/Items/Item">
 <a href="#" rst:href:pagename="details"
 rst:href:lid="item1:@id"
 rst:content="item1:/Title">Item 1
 <a href="#" rst:href:pagename="details"
 rst:href:lid="item2:@id"
 rst:content="item2:/Title">Item 2
 <a href="#" rst:href:pagename="details"
 rst:href:lid="item3:@id"
 rst:content="item3:/Title">Item 3

Loading the page directly in the browser shows the same content as the mockup. What we
did was to add a few RST attributes:

© 2009 by Vendio Services, Inc. 19

Vendio Stores – Template Language Reference

● an rst:xml attribute to load the XML data
● an rst:repeat attribute to iterate through the item nodes. The attribute has an identifier

(item) that will be later referred in order to access the information in the node. The
attribute's value (/Storefront/ItemsInfo/Items/Item) is an XPath pointing to
the repetitive node name. If you remember, referring the Nth node in a list is made by
appending a [N] suffix to the XPath pointing to the node. The node containing the
rst:repeat attribute will form a loop: its contents (from the opening tag to the closing
tag, exclusively) will be repeated for each occurrence of the nodes referred by the
identifier, until no more nodes are found. In this case, the content will iterate through all
the <Item> nodes.

● inside the loop section, information belonging to a node is simply accessed by
appending a number to the identifier's name. item1 means "first node referred by
identifier item", item2 means "second node referred by identifier item", "item3" means
"third node referred by identifier item"

What happens if the items in the XML feed are less than the number of items in a loop
section? For instance, what if there were only 2 items returned in the feed, what would item3
have pointed to? The answer is: the item3 line would have been skipped and the loop would
have been terminated. Whenever the looping reaches the end of the list in the data feed, the
loop section is terminated.

What happens if the items in the XML feed are more than the number of items in a loop
section? Then the loop section will repeat, starting with the next available node. That is, after
completing the first loop, item1 will point to the 4th node (the first loop was completed after
rendering 3 nodes), item2 to the 5th and item3 to the 6th. Then, if more than 6 items were
available in the feed, item1 would point to the 7th node, and so on.

You may wonder, is it really necessary to write 3 lines of code? It seems that removing the
second and third line from the loop section would have endered the same output: item1 would
have pointed to the first node in the XML feed, then the loop section would have ended and
repeated itself until the last node in the feed: item1 would have pointed to the second node,
than to the third, and so on, for all the nodes. That's actually right: you don't need to write
identical lines for more than one node. Then why did we do it? For two reasons:

1. The mockup contained 3 lines. If we'd removed the 2nd and 3rd line from the template,
the rendered template would've looked ok, but the dummy template, loaded directly in
the browser, would've displayed only one line instead of 3. If preserving the mockup is
important (for showcasing, or for future editing), then adding RST attributes to 3 lines
instead of one may be worth the effort.

2. As you're about to see, there are times when subsequent items are not rendered
identically. Examples may include: several items on a row in a table, or alternating
colors of the row background.

Limit the number of displayed items in a list

There are cases when the XML feed may return a larger (or unknown) number of items than a
page needs to display. In this cases, iterating blindly through all the items in the list may break

© 2009 by Vendio Services, Inc. 20

Vendio Stores – Template Language Reference

the layout of the page, or even the customer's browser. Adding a maximum limit to the
number of items to iterate through, as well as an initial offset is done by using two RST
attributes: rst:max and rst:start.

Example:
<ul rst:xml="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.searchString=test&GII.store=mystorename"
 rst:repeat:item="/Storefront/ItemsInfo/Items/Item"
 rst:start="0"
 rst:max="9">
...

Using different formatting for items in a list

If you want to display a list of items, 3 items in a row, then you need to include each item in a
cell but also include every three items in a row. How do you do that? The answer is simple:
design your mockup and then just add RST attributes. Let's say your mockup looks like:

<table>
 <tr>
 <td>Item1</td>
 <td>Item2</td>
 <td>Item3</td>
 </tr>
</table>

To turn the above code into a repetitive section using XML feed data, you will write:
<table>
 <tr rst:xml="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.searchString=test&GII.store=mystorename"
 rst:repeat:item="/Storefront/ItemsInfo/Items/Item">
 <td rst:content="item1:/Title">Item1</td>
 <td rst:content="item2:/Title">Item2</td>
 <td rst:content="item3:/Title">Item3</td>
 </tr>
</table>

Brilliant? Simplicity always has that! Let's recap:

● You define a looping section, by indicating the nodes to loop through
● You write the HTML markup for one or more loops. You use numbers to define node

offsets within a loop
● You let the RST engine to do the magic!

© 2009 by Vendio Services, Inc. 21

Vendio Stores – Template Language Reference

1.9 Dynamically refresh content with AJAX

Unless you've been living on a different web planet than Internet, you heard about AJAX.
Some praise it, some blame it, but the reality is that everybody uses it. So it would be a
shame if RST templates were any different, wouldn't it?

What does AJAX do?
The AJAX definition ranges from "a coined acronym for an old, poorly used
technology" to "the core technology of web2.0". If you're interested in the origins,
history and core technology behind AJAX start from Wikipedia. If you want to learn
AJAX, start by reading some tutorials. If you just want to know what AJAX can do
for your store, this is it: it can load content faster, so that people spend less time
waiting for your store pages to load and focus more on the information that the
store has to offer. It offers a more pleasant UI experience, as well as a more
effective way of doing business online.

For example, it can replace a classic "shopping cart page" that shows the cart's
content every time you add a product to the cart, with a "shopping cart widget", a
small companion displayed in every page, which refreshes every time the cart's
content is changed, without requiring the visitor to wait for two full page refreshes.

Essentially, what you do with AJAX is: load content dynamically, in a specified area of the
current page, as a result of a user action (also called event). Example: refresh the shopping
cart widget whenever the visitor adds an item to the cart. Achieving this with RST is as simple
as having said that: refresh the shopping cart widget whenever the visitor adds an item to the
cart!

The RST attributes available for refreshing content via AJAX are:

● rst:ajax:event Name of event that triggers the AJAX call
● rst:ajax:load ID of element to load the AJAX content into
● rst:ajax:pagename store page name to load via AJAX
● rst:ajax:param parameters sent to the store page
● rst:ajax:loader ID of element to display while loading the AJAX content
● rst:ajax:onload function name to call when the AJAX call completes

To load content dynamically using AJAX, you need:

● a flyout div to load content into
● an element and an event to trigger the content load

The element that triggers the content load should have the following RST attributes:

● rst:ajax:event - the name of the event
● rst:ajax:load - the ID of the div to load content into
● rst:ajax:pagename - the store page name to load the content from
● any number of rst:ajax:param="name=value" attributes defining the parameters for

the store page to load on demand

Any additional code (show/hide the div, position the flyout relative to other elements in the
page etc.) should be specified normally in the onXXX event handlers.

© 2009 by Vendio Services, Inc. 22

http://www.w3schools.com/Ajax/ajax_intro.asp
http://en.wikipedia.org/wiki/Ajax_(programming)

Vendio Stores – Template Language Reference

Example:

flyoutcontent.html
<notag rst:if="{context:item}">You added item <notag rst:content="{context:item}"/></notag>
home.html
<div id="flyout" rst:include="flyoutcontent">Flyout content goes here</div>

<notag rst:xml="http://sell.vendio.com/GetHostedStoresInfoServlet?
verb=GII&GII.searchString=test&GII.store=mystorename"
 rst:repeat:item="/Storefront/ItemsInfo/Items/Item">
 <div rst:ajax:event="onclick"
 rst:ajax:load="flyout"
 rst:ajax:pagename="flyoutcontent"
 rst:ajax:param="item={item1:/Title}">Click to add

 <notag rst:content="item1:/Title">item</notag>
 </div>
</notag>

1.10 Split your template in smaller files: using includes

Designing a template leads almost always to the need of duplicating content across pages.
Whether it's about a common layout, or about a common color palette, or basic sections that
are present on all pages, one can quickly identify portions of code that can be isolated and
"reapplied", in the exact same form or slightly modified (parametrized), in more places within
your template. Where this leads further is that you want to include the repetitive content in a
separate file and have a way to tell the template renderer: include my repetitive section here.

With RST, this is as simple as:

● any .html file can be included in another .html file

● to include a .html file, use the rst:include attribute, with the value set to the name of
the included file, without the .html extension

Example:

leftnav.html
<td width="20%">Some content</td>
rightnav.html
<td width="20%">Some content</td>
home.html
<table width="100%">
 <tr>
 <notag rst:include="leftnav"/>
 <td>Home Page</td>
 <notag rst:include="rightnav"/>

© 2009 by Vendio Services, Inc. 23

Vendio Stores – Template Language Reference

 </tr>
</table>
about.html
<table width="100%">
 <tr>
 <notag rst:include="leftnav"/>
 <td>About Us</td>
 <notag rst:include="rightnav"/>
 </tr>
</table>

In this (oversimplified) example, two different pages (Home and About Us) share the same left
nav and right nav. This is achieved by including the left nav and right nav contents in separate
files and including the files in the two pages.

© 2009 by Vendio Services, Inc. 24

Vendio Stores – Template Language Reference

2. Advanced RST | Tweaking the templates
This chapter describes a few advanced techniques that will help you build more complex
templates.

2.1 Debugging your template

We designed the Store templates with speed and simplicity in our minds, so that you can
apply a template to your store literally within seconds. This comes at a price: you are
responsible for the content of your template. If your template is broken, your store will be
broken. Therefore, we recommend that you turn your Store not publicly visible while you
customizing it, or otherwise your changes will be publicly visible to your store's visitors. You
can fix and re-upload your template as many times as you want, or you can revert to one of
Vendio's templates.

To test the layout of your template, use the preview feature of the Store Template page. If
you need layout changes, you do them in your local directory, repack the template, re-upload
it and preview it again to see the changes.

If your template has a proper layout but the integration with the store data is broken, your
store may become unusable. In this case, visiting your store will show a fatal error page and
you'll have no clue what the error might be. Luckily, there's a way to inspect the errors that
your template may contain. Just go to your store's URL and append a ?__debug=127
parameter and you will enter the store debug mode. Your store will no longer display an
error page, but rather show you useful information about how the store data is retrieved and
integrated in the template. If you see any messages in red, those are the errors that prevent
your store from appearing properly.

The template debug mode
Appending a ?__debug=127 parameter to your page URL will show the
maximum available information related to how your template fetches and
integrates the store data. Debug messages related to broken XML feeds, invalid
paths within the XML documents, invalid conditions or loops will show in red, while
debug messages related to XML data sources, file inclusions, and data
evaluations will show in green.
You can tweak the amount of debug information that is shown in the page. Thus,
the value you assign to the __debug parameter is calculated as a sum of the
following partial detail levels:

● 1 - show API errors (invalid XML responses)
● 2 - show template errors (orphan tags, parse errors)
● 4 - show loop info
● 8 - show evaluated conditions
● 16 - show trace info
● 32 - show evaluated values
● 64 - show XML feeds

© 2009 by Vendio Services, Inc. 25

http://stores.beta.vendio.com/wizard/main/chooseTemplate

Vendio Stores – Template Language Reference

Example: to show API errors, template errors and XML feeds you will need to
pass a debug value of 1 + 2 + 64 = 67, as in:
http://www.vendio.com/stores/your_store_name?__debug=67

2.2 Design constraints in Beta phase

While we're offering Vendio Stores as a Beta service, we're continually working on improving
it and enhancing its features. We're also working on eliminating a few legacy constraints that
currently affect the way templates need to be designed. For maximum compliance, designers
should be aware (and respect) the following constraints:

● While in Beta phase, all templates should contain at least the following pages:
● home.html - the store home page
● category.html - the items by category page (also used as search results page)

• receives the catId or searchString parameters
● item.html - the item detail page

• receives the lid parameter
● cart.html - the cart contents page

• receives the cartId parameter
● trackorder.html - track order page

• receives the order_number and email parameters
● policy.html - store policies page
● about.html - about us page
● contact.html - contact us page
● error.html - fatal error page
● checkout_api.html - the checkout page header & footer in XML format (see

below)

● The checkout page is a special page. Although it has a .html extension, the
checkout_api.html page needs to have the following format:

<notag rst:nohtml="1" rst:header="Content-Type: text/xml"/>
<CheckoutPageUIResponse><Top><![CDATA[
... checkout page top HTML ...
]]></Top><Bottom><![CDATA[
... checkout page bottom HTML ...
]]></Bottom></CheckoutPageUIResponse>

● Only the page header and footer can be fully customized in the checkout page.
The middle section, the checkout form, has a fixed format and its appearance
can be modified through CSS

● The checkout page can NOT contain a <DOCTYPE> definition (because both the
header and the footer are included inside the BODY tag of the page)

● All template assets (CSS, JS, or image files) referred from the header and footer
must have absolute URLs, that is prepend the src attributes with
{context:__templatebase}

© 2009 by Vendio Services, Inc. 26

Vendio Stores – Template Language Reference

● All template pages except the checkout page must contain a Vendio tracking image:
<!-- Tracking hit URL -->
<img rst:if="{context:__pagename} ne checkout_api" alt=""
width="1" height="1" rst:attr:src="{context:__trackurl}"/>

● The item detail page (item.html) may contain a Vendio counter image:
<img rst:xml:storeinfo="{context:__storesapiurl}?verb=GSI&GSI.store={context:__store}"
rst:attr:src="{context:__counterurl}.{storeinfo:/Storefront/StorefrontInfo/AccountId}.
{context:lid}"/>

● The following size limitations apply to the template file storage:
● Maximum number of templates, per account: 50
● Maximum size, per template: 8MB
● Maximum size, per account: 200MB

© 2009 by Vendio Services, Inc. 27

Vendio Stores – Template Language Reference

3. Language specifications
This chapter contains the full, condensed reference of the RST language: concepts,
definitions, rules, syntax. For a pocket guide of RST, please refer to the RST Quick Language
Reference document.

3.1 The RST data sources

During the rendering process of a page, several data sources are used.

XML data sources

Remote XML data sources are defined by a HTTP URL to access the data from. The XML
data is fetched from the given URL and stored for later access. Content is usually accessed
via XPath expressions. One or more XML data feeds can be defined for each template page.
The XML data is cached for a given period, controllable via the RST attributes. Local XML
data sources can also be defined to refer static XML documents within the template's
directory.

Context variables

Context variables represent transient data specific to a page view: the page name, pagination
info (items per page, page number, search parameters), navigation info (current page,
previous page, next page) etc. Technically, the context variables consist of all the GET data
available in a page request plus several "magic" variables that can be computed based on the
existing ones (such as the links to prev/next pages in a search results page).

Session variables

Session variables are data that the server can store between multiple page accesses. Typical
usage includes "last item viewed", "user id" etc. Session variables are stored using browser
cookies.

Data pointers

Shortcuts or pointers to a data source can be defined at any moment for later referencing.
This is particularly useful to display recursive information (such as a category tree) or to
shorten data paths.

3.2 The RST features

The RST language and the RST render engine offer the following functionality to a template:

Display dynamic data

Data from any data source (XML feed, context or session) can be accessed, processed and

© 2009 by Vendio Services, Inc. 28

http://stores.beta.vendio.com/documentation/HostedStoresRSTPocketGuide.pdf
http://stores.beta.vendio.com/documentation/HostedStoresRSTPocketGuide.pdf

Vendio Stores – Template Language Reference

displayed within the template, overriding any dummy data from the mockup.

Conditional display

Content can be conditionally displayed or hidden based on a simple test performed on the
data.

Repetitive display

Similar content (such as item details for every item) can be displayed by looping on a given
data source container. Moreover, iterations can be done in groups of items, so it is possible to
give different formatting to different items in a group (in order to display multiple lines with 3
items on a line for instance).

Navigation support

The RST language offers an easy way to define links between pages and/or form submits,
based on the context data.

AJAX support

The RST language provides an easy way to bind dynamic content fetching via AJAX to
specific HTML events (for instance, to show a flyout box on mouseover).

3.3 The RST syntax

The RST language is based on adding special HTML attributes (that have a special rst: prefix)
to certain HTML tags in the template.

RST paths

A RST path defines a way to access data in an XML data source. The RST path format is:
identifier:xpath@attribute

• identifier:: pointer to a RST data source
• xpath: XPath expression to search through an XML data source
• @attribute: attribute name related to the XML node

Any of the parts can be missing:

• A RST path may consist of an identifier. Example: "category"
• A RST path may lack the identifier name. Example:

"/sf_subcateg[0]/category@id"
• A RST path may lack the attribute. Example: "/sf_subcateg[0]/category/name"
• A RST path may lack the XPath expression. Example: "category:@id"

An XPath expression followed by an attribute is called an extended XPath.

© 2009 by Vendio Services, Inc. 29

Vendio Stores – Template Language Reference

RST expressions

A RST expression is any value that can be stored in a RST Attribute. A RST expression can
consist of:

● an RST path: identifier:xpath@attribute. Example:
"category:/sf_subcateg[0]/category@id"

● references to data containers: context:, session:. Example: "context:page"
● a combination of more RST expressions: {}. Example: "Page {pagination:@page}
of {pagination:@totalPages}"

● nested RST expressions: "Page {pagination:pages[{pagination:@page}]}"
● arithmetical operations: +, -, *, /. Example: "Items {{pagination:@pageSize} *
({pagination:@page} - 1)}"

● conditions: eq, ne, gt, ge, lt, le, or, and. Example: "{pagination:@page} eq 1"
● functions: rst:q, rst:cbw, rst:pw, rst:uc, rst:ucfirst, rst:lc, rst:html, rst:url,

rst:length, rst:substr, rst:round, rst:amount, rst:date, rst:seourl,
rst:seokeywords, rst:anyof. Example: "{rst:substr({category:@name}, 0,
5)}..."

● strings. Example: "Loading page, please wait..."

RST attributes

A RST attribute is a HTML attribute that is parsed by the RST engine and has the following
format: rst:type:identifier="expression". Example: "rst:repeat:item="/storefront/
categories/category"

● rst:: prefix, the attribute prefix that makes it recognizable by the parser
● type: RST type, the type of the RST attribute
● identifier: RST identifier, the name of the RST entity represented by the RST attribute
● expression: a RST expression

© 2009 by Vendio Services, Inc. 30

Vendio Stores – Template Language Reference

4. Full language reference
This chapter describes all the RST features, in detail. Using RST attributes, you can perform
the following data binding tasks:

4.1 Define XML data sources

● rst:xml
● rst:ttl XML cache validity, in seconds (default 3600, set to 0 to prevent caching)
● rst:method HTTP method to retrieve the data source (GET or POST, default

GET)
● rst:xmlsource XML source location (template, default: remote through http)

4.2 Display data

● rst:content

4.3 Access context information

● context:: access context information (GET, POST and "magic")
● "Magic":

● context:__pagename store page name (home, item etc.)
● context:page page number in pagination data
● context:__prevpage previous page number in pagination data
● context:__nextpage next page number in pagination data
● context:__currenturl full URL of current page
● context:__currentpageurl URL of current page, without any GET

parameters
● context:__lasturl full URL of last store page visited
● context:__errmsg fatal error message, in the error page
● context:__store name of store owner (store URL)
● context:__template name of the template
● context:__storebase URL of current store (e.g.

http://www.vendio.com/stores/MyStore/)

● context:__storesecurebase HTTPS URL of current store (e.g.
https://www.vendio.com/stores/MyStore/)

● context:__storehttpbase HTTP URL of current store (e.g.
http://www.vendio.com/stores/MyStore/)

● context:__storehomeurl URL to store home page
● context:__jsbase URL to the javascript libraries available on the Vendio

Stores domain (e.g. http://stores.beta.vendio.com/javascript/)

● context:__templatebase URL of template content (e.g.
http://www.vendio.com/stores/.template/MyStore/current/)

© 2009 by Vendio Services, Inc. 31

Vendio Stores – Template Language Reference

● context:__checkouturl URL to Vendio Checkout
● context:__storesapiurl URL to Vendio Stores API
● context:__trackurl URL to Vendio tracking URL. Ends with cid=, need

to append cid value from XML
● context:__helpers HTML code to include Javascript helper scripts and
BASE tag

4.4 Access session information

● rst:session

4.5 Display content conditionally

● rst:if display content if condition matched (e.g. <notag rst:if="{/items@count}
gt 0" rst:content="/items@count"/>)

● rst:ifnot display content if condition not matched
● Supported operators: eq, ne, gt, ge, lt, le, or, and

● rst:assert abort page rendering with fatal error if assertion fails (e.g. <notag
rst:assert="/Response/Status">)

4.6 Define data pointers

● rst:define
● rst:local Make the define specific for the block it was defined in, unset / revert to

previous value when the block ends

4.7 Set HTTP headers

● rst:header Set HTTP headers (e.g. <notag rst:header="Content-Type:
text/xml"/>)

● rst:redirect Redirect (e.g. <notag rst:redirect="http://www.yahoo.com"/>)
● rst:nohtml Suppress helpers output (for AJAX or XML pages)
● rst:error Abort page rendering with fatal error (e.g. <notag rst:error="Invalid
quantity">)

• Error message is only logged, not displayed to users

4.8 Define loop sections

● rst:repeat
● rst:start
● rst:max

4.9 Override HTML attributes

● rst:attr

© 2009 by Vendio Services, Inc. 32

Vendio Stores – Template Language Reference

4.10 Navigation & SEO

● rst:href
● rst:href:pagename
● rst:seo
● rst:action
● rst:action:pagename

4.11 AJAX support

● rst:ajax:event Name of event that triggers the AJAX call
● rst:ajax:load ID of element to load the AJAX content into
● rst:ajax:pagename store page name to load via AJAX
● rst:ajax:param parameters sent to the store page
● rst:ajax:loader ID of element to display while loading the AJAX content
● rst:ajax:onload function name to call when the AJAX call completes

To load content dynamically using AJAX, you need:

● a flyout div to load content into
● an element and an event to trigger the content load

The element that triggers the content load should have the following RST attributes:

● rst:ajax:event - the name of the event
● rst:ajax:load - the ID of the div to load content into
● rst:ajax:pagename - the store page name to load the content from
● any number of rst:ajax:param="name=value" attributes defining the parameters for

the store page to load on demand

Any additional code (show/hide the div, position the flyout relative to other elements in the
page etc.) should be specified normally in the onXXX event handlers.

4.12 Include sections

● rst:include

4.13 The special RST tag

● <notag>

4.14 Set up multiple RST attributes in one tag

For each tag, the order of evaluation is:

● check tag conditions (rst:if, rst:ifnot, rst:assert). Skip tag if any of the conditions is
not met

● set variables (rst:define, rst:session)
● process headers (rst:error, rst:header, rst:redirect)

© 2009 by Vendio Services, Inc. 33

Vendio Stores – Template Language Reference

● fetch XML data (rst:xml, rst:xmlsource, rst:ttl, rst:method)
● process output modifiers (rst:nohtml)
● process content specifiers (rst:include, rst:content, rst:repeat)
● process attribute modifiers (rst:attr, rst:href, rst:seo, rst:action, rst:ajax, rst:src)

4.15 Javascript frameworks

All major javascript frameworks are available under the /javascript directory.

● /javascript/ext/ext-base.js
● /javascript/jquery/jquery-latest.js

● /javascript/jquery/plugins
● /javascript/jquery/plugins/interface
● /javascript/jquery/plugins/ui

● /javascript/mootools.js
● /javascript/slimbox.js
● /javascript/thickbox.js

September 7th, 2009
The Vendio Stores Team

© 2009 by Vendio Services, Inc. 34

	The Vendio Stores
	Assumptions and prerequisites
	1.1 HTML just works!
	Hello, World!
	Adding template assets

	1.2 Adding data to your store using XML feeds
	The Vendio Stores API
	Adding content from an XML feed
	Loading data from a local XML file
	Loading multiple XML data sources
	Speed up data loading: caching XML data

	1.3 Replacing HTML attributes with real data
	1.4 The pseudo-tag: <NOTAG>
	1.5 Using context data
	1.6 Adding navigation to your site: linking pages
	1.7 Display conditional content
	1.8 Show repetitive content
	Display all items in a list
	Limit the number of displayed items in a list
	Using different formatting for items in a list

	1.9 Dynamically refresh content with AJAX
	1.10 Split your template in smaller files: using includes
	2.1 Debugging your template
	2.2 Design constraints in Beta phase
	3.1 The RST data sources
	XML data sources
	Context variables
	Session variables
	Data pointers

	3.2 The RST features
	Display dynamic data
	Conditional display
	Repetitive display
	Navigation support
	AJAX support

	3.3 The RST syntax
	RST paths
	RST expressions
	RST attributes

	4.1 Define XML data sources
	4.2 Display data
	4.3 Access context information
	4.4 Access session information
	4.5 Display content conditionally
	4.6 Define data pointers
	4.7 Set HTTP headers
	4.8 Define loop sections
	4.9 Override HTML attributes
	4.10 Navigation & SEO
	4.11 AJAX support
	4.12 Include sections
	4.13 The special RST tag
	4.14 Set up multiple RST attributes in one tag
	4.15 Javascript frameworks

